Abstract

Herein, we have designed and synthesized two heteroatom (N, O) rich covalent organic frameworks (COF), PD-COF and TF-COF, respectively, to demonstrate their relative effect on CO2 adsorption capacity and also CO2 /N2 selectivity. Compared to the non-fluorinated PD-COF (BET surface area 805 m2 g-1 , total pore volume 0.3647 ccg-1 ), a decrease in BET surface area and also pore volume have been observed for fluorinated TF-COF due to the incorporation of fluorine to the porous framework (BET surface area 451 m2 g-1 , total pore volume 0.2978 ccg-1 ). This fact leads to an enormous decrease in the CO2 adsorption capacity and CO2 /N2 selectivity of TF-COF, though it shows stronger affinity towards CO2 with a Qst of 37.76 KJ/mol. The more CO2 adsorption capacity by PD-COF can be attributed to the large specific surface area with considerable amount of micropore volume compared to the TF-COF. Further, PD-COF exhibited CO2 /N2 selectivity of 16.8, higher than that of TF-COF (CO2 /N2 selectivity 13.4).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call