Abstract

Different grades of magnetic cobalt ferrite (CoFe2O4) nanoparticles were synthesized with various molar ratios of Fe+2 to Co+2 ions in the initial salt solutions by the co-precipitation method. The crystal structure and morphology of the nanoparticles are obtained from X-ray diffraction and transmission electron microscopy studies. Fourier transform infrared spectroscopy analysis exhibited the Fe–O stretching vibration ~540cm−1, confirming the formation of metal oxide. The magnetic studies demonstrate that all of the nanoparticles are superparamagnetic at 300K. The saturation magnetization and coercivity of the CoFe2O4 nanoparticles are affected by the molar ratios of Fe+2 to Co+2 ions. Among all the synthesized nanoparticles, the system with 75:25 molar ratio of Fe+2 to Co+2 ions with a particle size of 13nm showed a high magnetization of 90emu/g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.