Abstract
Lithium solid state batteries are one of the state of the art energy storage systems due to their high safety. However, ionic conductivity in solid electrolytes is a concern, because at present it does not match the ionic conductivity of non-aqueous Li-ion batteries, thus resulting in sluggish electrochemical kinetics. In this report, we enhance the ionic conductivity of Li-argyrodites (Li6PS5Cl0.5Br0.5) through Si substitution at the P-site using a dry ball milling process. Among the silicon substitutions, Li6.2Si0.2P0.8S5Cl0.5Br0.5 exhibited the high ionic conductivity of 5.12 mS cm−1 compared to pristine Li6PS5Cl0.5Br0.5 at 4.02 mS cm−1. The Rietveld refinement analysis revealed that after silicon substitution, volume of the unit cell gets increased that allows the lithium at T2-site, that promotes the fast Li-ion transport. Moreover, the optimized solid electrolyte was utilized in a solid state battery system, and demonstrated a high initial capacity of 148.1 mAh g−1 at 0.1 C rate compared to pristine argyrodite (135.1 mAh g−1). Further, we demonstrated the interface phenomena between electrode and solid electrolyte using ex-situ XPS analysis. This confirmed the formation of interface products such as LiCl, Li2S, lithium polysulfides and P2Sx, which influence the cycling stability of the ASSLBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.