Abstract
This note provides an analytical proof of the optimal tuning of centrifugal pendulum vibration absorbers (CPVAs) to reduce in-plane translational and rotational vibration for a rotor with N cyclically symmetric substructures attached to it. The reaction forces that the substructures (helicopter or wind turbine blades, for example) exert on the rotor are first analyzed. The linearized equations of motion for the vibration are then solved by a gyroscopic system modal analysis procedure. The solutions show that the rotor translational vibrations are reduced when one group of CPVAs is tuned to order N−1 and another group is tuned to order N+1. Derivation of this result is not available in the literature. The current derivation also yields the better known result that tuning CPVAs to order N reduces rotational rotor vibration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.