Abstract

Active Disturbance Rejection Control (ADRC) is emerging as a promising solution in dealing with the unmeasurable disturbances and unknown uncertainties, which are treated in a lumped manner and augmented as an extended state variable. Subsequently, an extended state observer (ESO) is designed to estimate and cancel the combined uncertain term in real time, modifying the uncertain plant to behave like a nominal model consisting of integrators. In the original ADRC formulation, the plant model is assumed to be of delay-free and its order is assumed to be equal to that of the real plant. However, a low-order ADRC is preferred and received a wide acceptance in practice because of its simplicity. Currently, the feasibility of such practice is not clearly revealed as well as its potential dangers. To this end, this paper analyzes the control mechanism from the perspective of the modified plant, which, in turn, would give guidance to parameter tuning. The effect of each parameter on the compensation efficiency and stability conditions of the modified plant is analyzed, based on which a complete tuning procedure for ADRC is developed where the initial settings is derived from the existing PI controller parameters. Finally, the proposed tuning method is experimentally used for a furnace pressure regulation of a 1000MW power plant, validating the feasibility of the low-order ADRC, even in the absence of both dynamic model and the information on the model order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.