Abstract

Sonodynamic therapy (SDT) is a promising strategy to treat deep-seated bacterial infections with good tissue penetration and spatiotemporal controllability. However, the low ROS generation efficiency of current sonosensitizers limits the development of SDT. Herein, we report a porphyrin derivative, TAPyPP-2, the sonodynamic activity of which is enhanced with less oxygen dependence by tuning its molecular assembly behavior. TAPyPP-2 can spontaneously form an ultra-small nano-assembly with a diameter of 6 nm in water by conjugation with primary amine salt-decorated pyridinium via π-π staking. The ultra-small assembly behavior can lower the energy gap between singlet and triplet states to 0.01 eV and promote the separation of holes and electrons, which facilitates ROS generation under ultrasound irradiation, in particular type I ROS. The unique hydrophilic ratio and positive charges endow TAPyPP-2 with superior abilities to interact with Staphylococcus aureus, resulting in extremely high sonodynamic antibacterial activity. Therefore, TAPyPP-2 successfully kills Staphylococcus aureus bacteria in the enclosed cavity of synovial joint and achieves effective SDT of septic arthritis. This work is anticipated to motivate enormous interest in the development of efficient SDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.