Abstract

Abstract This study reports the preparation of silicon carbide ceramic membranes with pure silicon carbide particles without sintering aids. The effects of sintering temperature on the microstructure, mechanical and filtration properties were investigated. The porosity of the substrate layer increased from 37% to 41% when the sintering temperature ranged from 2150 to 2300 °C, whereas the flexural strength increased from 14.5 to 18.2 MPa. The separation layer was coated on the substrate layer using a spray process. When sintered at 1850 °C, a smooth and defect-free layer was formed with an average pore size and layer thickness of 1.2 and 60 μm, respectively. With the increase of average pore size, the filtration flux increased from 2650 to 2800 L/(m2 h bar). Such ceramic membranes can be used to separate corrosive wastewater and high-temperature wastewaters owing to the exclusion of sintering aids, unlike the conventional ceramic membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.