Abstract

Metal-support interaction (MSI) has been widely recognized to be playing a pivotal role in regulating the catalytic activity of various reactions. In this work, the degree of MSI between Pt and CeO2 support was finely tuned by adjusting the activation condition, and the obtained catalysts were tested for the oxidative abatement of CO and HCHO under ambient conditions. The characterization of catalysts shows that activation of strongly interacting Pt-CeO2 at higher temperatures by H2 leads to a weaker MSI with increased electron density of Pt, and this modification of local electronic properties is demonstrated to result in enhanced O2 adsorption/activation to prevent the CO self-poisoning effect, while it abates the activity of CO adsorption/activation and oxidation of adsorbed CO. The Pt-CeO2 catalyst with a moderate MSI, which is able to balance each step in the catalytic cycle over Pt and Pt-CeO2 interface domains, displays the highest activity for CO/HCHO oxidation under ambient conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.