Abstract

We have investigated the static and dynamic behavior of “pseudo-3D” trilayer square artificial spin ice structures. The trilayer stack comprises of two ferromagnetic Ni81Fe19 (Permalloy, Py) layers with 30 and 70 nm thickness, separated by a nonmagnetic copper layer of varying thickness from 2 to 40 nm. We show that the copper thickness enables interlayer coupling between layers to be finely controlled, leading to bespoke magnetization states and resonance spectra tuning. Our results demonstrate a further route to control the interaction in artificial spin ices beyond planar structures, enabling tunable magnetization dynamics, a potentially programmable degree of freedom for magnonic and microwave devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.