Abstract
In view of important role of inducing and manipulating the magnetism in 2D materials for the development of low-dimensional spintronic devices, the magnetism of GaN monolayer with Ga vacancy and nonmagnetic chemical doping are investigated using first-principles calculations. It is found that pure GaN monolayer has graphene-like structure and is nonmagnetic. While, a neutral Ga vacancy can induce 3μB intrinsic magnetic moment, localized mainly on the neighboring N atoms. Interestingly, after one Mg or Si atom doping in g-GaN with Ga vacancy, the magnetic moment can be modified to 4μB or 2μB respectively due to the change in hole number. Meantime, Mg-doped g-GaN with Ga vacancy shows half-metal character. With the increasing of doping concentrations, the magnetic moment can be further tuned. The results are interesting from a theoretical point of view and may open opportunities for these 2D GaN based materials in magnetic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.