Abstract

Zigzag-edged graphene nanoribbons are antiferromagnetic in cross-edge coupling and unsuitable for spintronics applications. Two new strategies of tuning antiferromagnetism (AFM) to ferromagnetism (FM) in graphene nanoribbons are introduced through topological line defects composed of pentagonal and octagonal rings, and their ability to induce magnetic transition is probed by using density functional theory. The resulting exchange energy is found to be large enough for ferromagnetism to be observed at room temperature. Both strategies are experimentally feasible, and the results suggest that defect engineering may provide a novel path to manipulate the magnetic properties of graphene nanoribbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.