Abstract

Luminomagnetic composites have been synthesized that allow for an individual tuning of luminescence intensity, chromaticity and magnetization by combination of superparamagnetic, citrate-stabilized iron oxide nanoparticles with the luminescent MOFs 3 ∞ [Ln2 (BDC)3 (H2 O)4 ] (Ln=Eu, Tb; BDC2- =terephthalate). The components are arranged to a concept of inverse structuring compared to previous luminomagnetic composites with MOF@magnetic particle (shell@core) composition so that the luminescent MOF now acts as core and is covered by magnetic nanoparticles forming the satellite shell. Thereby, the magnetic and photophysical properties are individually tuneable between high emission intensity (1.2 ⋅ 106 cps mg-1 ) plus low saturation magnetization (6 emu g-1 ) and the direct opposite (0.09 ⋅ 106 cps mg-1 ; 42 emu g-1 ) by adjusting the particle coverage of the MOF. This is not achievable with a core-shell structure having a magnetic core and a dense MOF shell. The composition of the composites and the influence of different synthesis conditions on their properties were investigated by SEM/EDX, PXRD, magnetization measurements and photoluminescence spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.