Abstract
With the significant advances in electronic products, materials with good flexibility, corrosion resistance, high electrical conductivity and minimal thickness are urgently needed. Herein, we demonstrate the biomimetic core–shell structure of lightweight, flexible, self-cleaning nanofiber films for high-performance electromagnetic interference (EMI) shielding by tuning the deposition of Ag nanoparticles (AgNPs). With a thickness of 0.06 mm, PAN@TiO2@AgNPs composite films (PTA films) exhibit an average EMI shielding effectiveness (SE) of 82.60 dB. After further processing with fluorine-containing molecules, the PTA-4 film becomes superhydrophobic and anticorrosive. After a hydrophobic treatment, composite films have average SE, specific SE (SSE) and SSE/t being 79.57 dB, 360.86 dB cm3 g−1, and 60143.33 dB cm2 g−1, respectively. In particular, conductive films that undergo UV radiation and bending cycles retain a stabilized electrical conductivity. This tuning bio-inspired fabrication method provides the films with UV-resistance, superhydrophobicity and EMI SE that fit the practical applications of wearable and flexible sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.