Abstract

Lewis acid sites that originate from ligand missing defects inspire diverse important applications of metal-organic frameworks (MOFs), such as heterogeneous catalysis. However, the facile regulation of Lewis acidity that promises good properties remains a challenge. Herein, we report a simple strategy to tune the Lewis acidity of iron-based MOFs. By substituting Fe centers with Ce atoms in the node (a.k.a., Ce doping), the catalytic ozonation performance of developed iron-based MOFs was highly improved. We found that both the total Lewis acidity and the salicylic acid (SA) degradation rate of Ce-doping MIL-88A(Fe) linearly correlated to the suitable Ce substitution ratio. Notably, the degradation rate and TOC removal of MIL-88A(Fe0.80Ce0.20) was about 3 and 2 times higher than those of parent MIL-88A(Fe), respectively. Reactive oxygen species (ROS), including surface adsorbed hydroxyl radicals (OHads), superoxide radicals (O2−), and singlet oxygen (1O2) were responsible for SA destruction. MIL-88A(Fe0.80Ce0.20) with enlarged Lewis acidity substantially facilitated the generation of OHads and 1O2, leading to a more efficient SA degradation and mineralization. Moreover, Ce doping engineering also ameliorated the catalytic performances of MIL-53(Fe) and MIL-101(Fe), indicating that the tuning strategy we proposed is accessible and universal. This work may provide deep insights into highly efficient MOFs explorations for water purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.