Abstract

Interfacial strain in heteroepitaxial oxide thin films is a powerful tool for discovering properties and recognizing the potential of materials performance. Particularly, facilitating ion conduction by interfacial strain in oxide multilayer thin films has always been seen to be a highly promising route to this goal. However, the effect of interfacial strain on ion transport properties is still controversial due to the difficulty in deconvoluting the strain contribution from other interfacial phenomena, such as space charge effects. Here, we show that interfacial strain can effectively tune the ionic conductivity by successfully growing multilayer thin films composed of an ionic conductor Gd-doped CeO2 (GDC) and an insulator RE2O3 (RE = Y and Sm). In contrast to compressively strained GDC-Y2O3 multilayer films, tensile strained GDC-Sm2O3 multilayer films demonstrate the enhanced ionic conductivity of GDC, which is attributed to the increased concentration of oxygen vacancies. In addition, we demonstrate that increasing the number of interfaces has no impact on the further enhancement of the ionic conductivity in GDC-Sm2O3 multilayer films. Our findings demonstrate the unambiguous role of interfacial strain on ion conduction of oxides and provide insights into the rational design of fast ion conductors through interface engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.