Abstract
AbstractControlling the interfacial properties between the electrode and active layer in organic field‐effect transistors (OFETs) can significantly affect their contact properties, resulting in improvements in device performance. However, it is difficult to apply to top‐contact‐structured OFETs (one of the most useful device structures) because of serious damage to the organic active layer by exposing solvent. Here, a spontaneously controlled approach is explored for optimizing the interface between the top‐contacted source/drain electrode and the polymer active layer to improve the contact resistance (RC). To achieve this goal, a small amount of interface‐functionalizing species is blended with the p‐type polymer semiconductor and functionalized at the interface region at once through a thermal process. The RC values dramatically decrease after introduction of the interfacial functionalization to 15.9 kΩ cm, compared to the 113.4 kΩ cm for the pristine case. In addition, the average field‐effect mobilities of the OFET devices increase more than three times, to a maximum value of 0.25 cm2 V−1 s−1 compared to the pristine case (0.041 cm2 V−1 s−1), and the threshold voltages also converge to zero. This study overcomes all the shortcomings observed in the existing results related to controlling the interface of top‐contact OFETs by solving the discomfort of the interface optimization process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.