Abstract

The performance of a model in machine learning problems highly depends on the dataset and training algorithms. Choosing the right training algorithm can change the tale of a model. While some algorithms have a great performance in some datasets, they may fall into trouble in other datasets. Moreover, by adjusting hyperparameters of an algorithm, which controls the training processes, the performance can be improved. This study contributes a method to tune hyperparameters of machine learning algorithms using Grey Wolf Optimization (GWO) and Genetic algorithm (GA) metaheuristics. Also, 11 different algorithms including Averaged Perceptron, FastTree, FastForest, Light Gradient Boost Machine (LGBM), Limited memory Broyden Fletcher Goldfarb Shanno algorithm Maximum Entropy (LbfgsMxEnt), Linear Support Vector Machine (LinearSVM), and a Deep Neural Network (DNN) including four architectures are employed on 11 datasets in different biological, biomedical, and nature categories such as molecular interactions, cancer, clinical diagnosis, behavior related predictions, RGB images of human skin, and X-rays images of Covid19 and cardiomegaly patients. Our results show that in all trials, the performance of the training phases is improved. Also, GWO demonstrates a better performance with a p-value of 2.6E-5. Moreover, in most experiment cases of this study, the metaheuristic methods demonstrate better performance and faster convergence than Exhaustive Grid Search (EGS). The proposed method just receives a dataset as an input and suggests the best-explored algorithm with related arguments. So, it is appropriate for datasets with unknown distribution, machine learning algorithms with complex behavior, or users who are not experts in analytical statistics and data science algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.