Abstract

Isotropic InP/ZnSe/ZnS quantum dots (QDs) are prepared at a high reaction temperature, which facilitates ZnSe shell growth on random facets of the InP core. Fast crystal growth enables stacking faults elimination, which induces anisotropic growth, and as a result, improves the photoluminescence (PL) quantum yield by nearly 20%. Herein, the effect of the QD morphology on photophysical properties is investigated by observing the PL blinking and ultrafast charge carrier dynamics. It is found that hot hole trapping is considerably suppressed in isotropic InP QDs, indicating that the stacking faults in the anisotropic InP/ZnSe structures act as defects for luminescence. These results highlight the importance of understanding the correlation between QD shapes and hot carrier dynamics, and present a way to design highly luminescent QDs for further promising display applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.