Abstract

Surface displacements of a few picometers, occurring after application of an electric potential to piezoelectric materials, can be detected and mapped with nanometer-scale lateral resolution by scanning probe methods, the most notable being piezoresponse force microscopy (PFM). Yet, absolute determination of such displacements, giving access for instance to materials’ piezoelectric coefficients, are hindered by both mechanical and electrostatic side-effects, requiring complex experimental and/or post-processing procedures for carrying out reliable results. The employment of quartz tuning-fork force sensors in an intermittent contact mode PFM is able to provide measurements of electrically-induced surface displacements that are not influenced by electrostatic side-effects typical of more conventional cantilever-based PFM. The method is shown to yield piezoeffect mapping on standard ferroelectric test crystals (periodically-poled lithium niobate and triglycine sulfate), as well as on a ferroelectric polymer (PVDF), with no visible influence from the applied dc electric potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call