Abstract

A tuning approach for the robust and optimal dynamic positioning control of BlueROV2 subjected to currents with varying speeds and headings is presented. A 2D planar dynamic model of BlueROV2 is developed in Matlab/Simulink and used for the study. The surge, sway and yaw motions are controlled by individual PID controllers. An extensive sensitivity study is carried out on a total of nine cases with different current speeds, current headings, and measurement noise levels. The results show that tuning a model solely using step responses from a linearized model might not produce optimal results. Further it is important to verify the system responses in time domain after tuning. Finally, it is observed that re-tuning the controllers for each simulation case may lead to better performance. However, it is also shown that the base case controller gains are sufficiently robust and lead to good performances for the other simulation cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.