Abstract

Enzyme–DNA nanostructures were designed to introduce new substrate–enzyme interactions into their reactions, which altered enzyme kinetics in a predictable manner. The designed enzymes demonstrate a new strategy of enzyme engineering based on the rational design of intermolecular interactions outside of the active site that enhance and control enzyme kinetics. Binding interactions between tetramethylbenzidine and DNA attached to horseradish peroxidase (HRP) resulted in a reduced Michaelis constant (KM) for the substrate. The enhancement increased with stronger interactions in the micromolar range, resulting in a 2.6 fold increase in kcat/KM. The inhibition effect of 4-nitrobenzoic hydrazide on HRP was also significantly enhanced by tuning the binding to HRP–DNA. Lastly, binding of a nicotinamide adenine dinucleotide (NAD(H)) cofactor mimic, nicotinamide mononucleotide (NMN(H)), to an aldo-keto reductase (AdhD) was enhanced by introducing NMN(H)–DNA interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.