Abstract
The adsorption of green fluorescent protein (GFP) on silica surfaces has been the subject of growing interest due to its potential applications in various fields, including biotechnology and biomedicine. In this study, we used all-atom molecular dynamics simulations to investigate the charge-driven adsorption of wild type GFP and its supercharged variants on silica surfaces. The results showed that the positively charged variant of GFP adsorbed on the negatively charged silica surface with minimal loss in its secondary structure. Further studies were conducted to understand the role of surface charge distribution on two other positively charged variants of GFP, and the results showed that the orientation of GFP on silica can be easily tuned by careful mutations of the charged amino acid residues on the GFP. This study provides valuable molecular insights into the role of electrostatic-driven adsorption of GFP and highlights the importance of charge interactions in the adsorption process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.