Abstract

AbstractAromatic groups are key mediators of protein–membrane association at cell surfaces, contributing to hydrophobic effects and π‐membrane interactions. Here we show electrostatic and hydrophobic influences of aromatic ring substituents on membrane affinity and cell uptake of helical, cyclic and cell penetrating peptides. Hydrophobicity is important, but subtle changes in electrostatic surface potential, dipoles and polarizability also enhance association with phospholipid membranes and cell uptake. A combination of fluorine and sulfur substituents on an aromatic ring induces microdipoles that enhance cell uptake of 12‐residue peptide inhibitors of p53‐HDM2 interaction and of cell‐penetrating cyclic peptides. These aromatic motifs can be readily inserted into peptide sidechains to enhance their cell uptake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.