Abstract

Defect engineering is a promising route for controlling the electronic properties of monolayer transition-metal dichalcogenide (TMD) materials. Here, we demonstrate that the electronic structure of MoS2 depends sensitively on the defect charge, both its sign and magnitude. In particular, we study shallow bound states induced by charged defects using large-scale tight-binding simulations with screened defect potentials and observe qualitative changes in the orbital character of the lowest lying impurity states as function of the impurity charge. To gain further insights, we analyze the competition of impurity states originating from different valleys of the TMD band structure using effective mass theory and find that impurity state binding energies are controlled by the effective mass of the corresponding valley, but with significant deviations from hydrogenic behaviour due to unconventional screening of the defect potential.

Highlights

  • Since the discovery of graphene, there has been significant interest in the development of ultrathin devices based on two-dimensional (2D) materials

  • Using large-scale tight-binding models and screened defect potentials calculated from ab initio dielectric functions, we reveal a surprising diversity of bound defect states resulting from the unconventional screening present in reduced-dimensional materials and the interplay between multiple valleys in the transition-metal dichalcogenide (TMD) band structure

  • Our key finding is that the orbital character of the lowest lying impurity states depends sensitively on the magnitude of the defect charge

Read more

Summary

Introduction

Since the discovery of graphene, there has been significant interest in the development of ultrathin devices based on two-dimensional (2D) materials. Continuum electronic structure methods, such as Dirac theory for graphene or effective mass theory for bulk semiconductors, can describe the behaviour of extended impurity states, but require parameters from experiments or ab initio calculations, such as Fermi velocities, effective masses[23,24,25,26,27] and rather importantly, the defect potential that is typically screened by electrons of the host material. Using large-scale tight-binding models and screened defect potentials calculated from ab initio dielectric functions, we reveal a surprising diversity of bound defect states resulting from the unconventional screening present in reduced-dimensional materials and the interplay between multiple valleys in the TMD band structure. We present results for impurity wavefunctions and binding energies as function of the impurity charge and compute the local density of states (LDOS) in the vicinity of the adatom, which can be measured in STS experiments

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.