Abstract

On the semi-insulating 4H–SiC (0001) surface, hydrogenated multilayers graphene (MLG) were epitaxially prepared by the method of Joule heating decomposition in the hydrogen atmosphere. The structural and chemical characteristics of multilayers graphene have been elaborately analyzed by the X-ray photoelectron and Raman spectroscopies, showing the level of hydrogenation being promoted with the increase of hydrogen pressure. Then, diodes with MLG/4H–SiC contact were fabricated and studied, proving that the Schottky barrier height (SBH) of MLG/4H–SiC junction was enhanced by the hydrogenation. By studying the typical current-voltage characteristics, the SBH was observed to be heightened from 0.84 eV to 1.0 eV along with the hydrogen pressure increasing from 10−2 mbar to 102 mbar. Finally, graphene-semiconductor-graphene photodetectors were fabricated, showing peak responsivity as high as~ 0.9 A/W and external quantum efficiency of 345%, under the 324 nm illumination and biased at 3V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.