Abstract

AbstractDual‐ion battery (DIB) is a promising energy storage system because it can provide high power. However, the stability and rate performance of the battery depend strongly on the type of salt and solvents in the electrolyte. Herein, the use of lithium bis(fluorosulfonyl)imide (LiFSI) is studied, which has better high‐temperature stability, as salt in the DIB and develop a 3 m LiFSI fluoroethylene carbonate/methyl 2,2,2‐trifluoroethyl carbonate (FEC/FEMC) = 3:7 electrolyte, which stabilizes graphite–lithium DIB with 94.1% capacity retention after 2000 cycles at 5C. The DIB also exhibits excellent rate performance with 100.4 mAh g−1 capacity at 30C, with a utilization of 96.3% compared to capacity at 2C. The outstanding electrochemical performance is attributed to the thin cathode electrolyte interface (CEI) layer and fast FSI− transport kinetics, confirmed by X‐ray photoelectron spectroscopy and activation energy calculation. Superior cycle and rate performances are also obtained from a graphite–graphite full cell. Though, increasing salt concentration to 5 and 6 m leads to sluggish FSI− de‐intercalation reaction and lower capacity, which is attributed to solvent co‐intercalation. The research suggests that the electrolyte plays an important role in ion transport, surface film formation, and stability of DIB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.