Abstract

The present work reports the fabrication and detailed electrical properties of graphene/p-type polycrystalline silicon (poly-Si) Schottky diodes with and without ultraviolet irradiation. Ultraviolet treatment may lead to the reduced work function of graphene, thus increasing the Schottky barrier height at the graphene/poly-Si interface. Compared to the graphene/poly-Si Schottky diodes without ultraviolet treatment, the ultraviolet-treated graphene/poly-Si Schottky diodes exhibit lower ideality factor and higher responsivity. The sensitivity of the work function of graphene to the ultraviolet irradiation time provides an opportunity to tune the electrical parameters of graphene/poly-Si Schottky diodes. The ability to controllably tune the work function of graphene is essential for optimizing the efficiency of optoelectronic and electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.