Abstract
Transition-metal-based approaches to selectively modify proteins hold promise in addressing challenges in chemical biology. Unique bioorthogonal chemistry can be achieved with preformed metal-based compounds; however, their utility in native protein sites within cells remain underdeveloped. Here, we tune the ancillary ligands of cyclometalated gold(III) as a reactive group, and the gold scaffold allows for rapid modification of a desired cysteine residue proximal to the ligand binding site of a target protein. Moreover, evidence for a ligand association mechanism toward C-S bond formation by X-crystallography is established. The observed reactivity of cyclometalated gold(III) enables the rational design of a cysteine-targeted covalent inhibitor of mutant KRAS. This work illustrates the potential of structure-activity relationship studies to tune kinetics of cysteine arylation and rational design of metal-mediated ligand affinity chemistry (MLAC) of native proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.