Abstract

In this contribution, we have demonstrated the ability to tune the morphologies of organic charge transfer complex (CuTCNQ) nanomaterials by controlling the shape and thickness of copper patterns on silicon (100) at mild experimental conditions. The results showed that the CuTCNQ nanorods grew on the copper patterns (65 and 70 nm) and the CuTCNQ nanoparticles generated on the thin copper patterns (26 and 37 nm). Excellent field emission properties were observed in these nanostructures of different morphologies. Importantly, the field emission current density of those nanomaterials is higher than that of organic semiconductor nanomaterials and many inorganic semiconductor nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.