Abstract

A series of four new Dy12 dodecanuclear clusters based on azobenzene derivative ligands of salicylic acid (L1-L4) has been synthesized and characterized in the crystalline phase using X-ray diffraction on single crystal and powder, IR spectroscopy, elemental analysis, and DSC-TGA methods. It was revealed that all obtained clusters exhibit the formation of the similar metallic cluster nodes, as vertex-sharing heterocubanes, obtained from four Dy3+ cations, three bridging hydroxyl groups, and O atoms from the salicylic ligands. The coordination geometry around the Dy(III) centers has been carefully analyzed. Whereas Dy12-L1 and Dy12-L2 with L1 and L2 containing Me and OMe groups in para positions of the phenyl rings, respectively, form similar porous 3D diamond-like molecular networks due to CH-π interactions, for Dy12-L3 with L3 bearing NO2-electron-withdrawing group, the generation of 2D molecular grids assembled by π-π staking is observed, and for Dy12-L4 with L4 bearing phenyl substituent, 3D hexagonal channels have been generated. The complexes Dy12-L1, Dy12-L2, and Dy12-L3 exhibit a zero-field slow magnetic relaxation effect. After UV irradiation of Dy12-L1, a decrease of the magnetic anisotropy energy barrier displaying the possibility of control over magnetic properties by the external stimulus has been observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call