Abstract

Electrostatically confined quantum dots in bilayer graphene have shown potential as building blocks for quantum technologies. To operate the dots, e.g., as qubits, a precise understanding and control of the confined states and their properties is required. Herein, a large‐scale numerical characterization of confined quantum states in bilayer graphene dots is performed over an extensive range of gate‐tunable parameters such as the dot size, depth, shape, and the bilayer graphene gap. The dot states’ orbital degeneracy, wave function distribution, and valley g‐factor are established and the parametric dependencies to achieve different regimes are provided. It is found that the dot states are highly susceptible to gate‐dependent confinement and material parameters, enabling efficient tuning of confined states and valley g‐factor modulation by quantum dot design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.