Abstract

The distance-resolved effective interaction between two colloidal particles in a subcritical solvent is explored both by an explicit and implicit modeling. An implicit solvent approach based on a simple thermodynamic interface model is tested against grand-canonical Monte Carlo computer simulations using explicit Lennard-Jones solvent molecules. Close to liquid-gas coexistence, a joint gas bubble surrounding the colloidal particle pair yields an effective attraction between the colloidal particles, the strength of which can be vastly tuned by the solvophobicity of the colloids. The implicit model is in good agreement with our explicit computer simulations, thus enabling an efficient modeling and evaluation of colloidal interactions and self-assembly in subcritical solvent environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call