Abstract
Coiled-coil leucine zipper domains are well-studied molecular recognition motifs that are attractive candidates for incorporation into engineered self-assembly systems due to their modular nature and wide range of binding affinities. Here, we investigate the ability of this peptide family to induce and control the specific association of micron-sized building blocks. Individual microparticles are functionalized with multiple copies of one particular leucine zipper motif which is capable of self-assembling through dimerization. We find that the dissociation temperature of the peptide-functionalized microparticles is considerably higher than the melting temperature of free peptide dimers in solution, which is a signature of the multivalent nature of the peptide-mediated particle interactions. We further demonstrate that titrating in freely soluble peptides to the peptide-coated bead suspensions can tune the particle association at constant temperature, pH, and ionic strength. While the high dissociation temperature of peptide-functionalized micro-objects may make global temperature control challenging, this ‘competition control’ with freely soluble peptides offers an attractive alternative to fine-tune the colloidal self-assembly with additional particle-specificity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.