Abstract

Fischer-Tropsch synthesis to olefins (FTO) with high carbon efficiency is an important but challenging research target. Current routes for direct syngas conversion to olefins suffer from high CO2 selectivity and low olefin yields due to the inevitable water-gas shift (WGS) reaction. Herein, we report that product selectivity can be controlled by tuning the wettability of the environment around the active center through simple physical mixing of cobalt carbide (Co2C) with a hydrophobic SiO2 component. The suppressed WGS reactivity results in a greatly improved catalytic performance of Co2C, significantly decreased CO2 selectivity (from 47.8% to 16.8%), and increased olefin selectivity (by ~65%) and activity (by 30%). The local hydrophobic environment favors the rapid diffusion of water away from the Co2C active center, thus remarkably enhancing the linear adsorption of CO and suppressing the production of CO2via WGS. This work provides a simple yet effective strategy to modulate the product selectivity and improve the carbon efficiency of the FTO process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call