Abstract
The optimization of the localized surface plasmon resonance (LSPR)-decaying channels of hot-electrons is essential for efficient optical and photochemical processes. Understanding and having the ability to control chemical interface damping (CID) channel contributions will bring about new possibilities for tuning the efficiency of plasmonic hot-electron energy transfer in artificial devices. In this scanning electron microscopy-correlated dark-field scattering study, the CID was controlled by focusing on the electronic nature of disubstituted benzene rings acting as adsorbates, as well as the effects of sharp tips on gold bipyramids (AuBPs) with similar aspect ratios to those of gold nanorods. The results showed that the sharp tips on single AuBPs, as well as the electronic effects of the adsorbate molecules, increase the interfacial contact between the nanoparticles and adsorbate molecules. Electron withdrawing groups (EWGs) on the adsorbates induce larger homogeneous LSPR line widths compared to those of electron donating groups (EDGs). Depending on the location (ortho, meta, and para) of the EDG, the effect of benzene rings with an EDG, which was considered to be induced by sulfur atoms bound to the nanoparticle surface, is weakened by the back transfer of electrons facilitated by the difference in the availability of the electrons of the EDG. Therefore, this study reports that the CID in the LSPR total decay channels can be tuned by controlling the electron withdrawing and electron donating features of adsorbate molecules with the surface topology of metal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.