Abstract

We report tuning of properties of type II nanostructures between quantum dot (QD)-like and quantum well (QW)-like behaviors in ZnSe layers with ZnTe submonolayer insertions, grown by migration-enhanced epitaxy. The sizes of QDs are estimated from magneto-photoluminescence (PL) measurements, which showed no significant change in the QD lateral size with increasing Te flux, indicating increase in QD density instead. The area density of QDs is estimated from the results of secondary-ion mass spectrometry measurements. It is determined that, in the sample grown using the highest Te flux, the electronic wavefunctions begin to overlap, leading to QW-like behavior before the formation of a full QW layer. This is also confirmed via temperature-dependent time-resolved PL, which showed significant change of excitonic lifetimes and binding energies of type II excitons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.