Abstract

The introduction of auto-tuning techniques in linear algebra routines using hybrid combinations of multiple CPU and GPU computing resources is analyzed. Basic models of the execution time and information obtained during the installation of the routines are used to optimize the execution time with a balanced assignation of the work to the computing components in the system. The study is carried out with a basic kernel (matrix-matrix multiplication) and a higher level routine (LU factorization) using GPUs and the host multicore processor. Satisfactory results are obtained, with experimental execution times close to the lowest experimentally achievable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.