Abstract

Information about the tuning and timing of excitation in cochlear axons with low-characteristic frequency (CF) is embodied in the first-order Wiener kernel, or reverse correlation function. For high-CF axons, the highest-ranking eigenvector (or singular vector) of the second-order Wiener kernel often can serve as a surrogate for the first-order kernel, providing the same information. For mid-CF axons, the two functions are essentially identical. In this paper we apply these tools to gerbil cochlear-nerve axons with CFs ranging from 700 Hz to 14 kHz. Eigen or singular-value decomposition of the second-order Wiener kernel allows us to separate excitatory and suppressive effects, and to determine precisely the timing of the latter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.