Abstract

In this work, ultrathin graphene-like carbon nitride nanosheets with rich nanoporous and excellent hydrophilic characteristics were synthesized by a simple and effective thermal exfoliation of bulk g-C3N4. In order to fully understand the effect of thermal exfoliation conditions on the texture, surface state, and photocatalytic activity of the resulting g-C3N4, a series of exfoliated g-C3N4 were prepared by adjusting the thermal exfoliation temperature and time. The detailed characterization and analysis distinctly suggested that increasing exfoliation temperature led to a large number of nitrogen vacancies and increased specific surface area, further prolonging exfoliation time, the thermal exfoliation degree was enhanced, more carbon vacancies and enlarged pore volume formed in the resulting products. Further, the exfoliation degree and photocatalytic ability of the resultant products were enhanced by increasing thermal exfoliation temperature and time. The optimized ultrathin graphene-like carbon nitride nanosheets exhibited a 89.6% degradation efficiency for Rh6G only in 10min, which was much faster than other such nanosheets reported in previous literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call