Abstract

A simple variable length (10–50 cm) air-spaced Fabry-Perot interferometer has been used to calibrate the tuning characteristics of a c.w. InSb spin-flip Raman laser (SFRL). The SFRL output frequency is determined by competition between the spontaneous spin-flip resonance line and the cavity axial modes of the InSb crystal. Over several cavity modes the SRFL is found to tune linearly within ±250 MHz and inside a single mode to ±50 MHz. The tuning rate over several modes is found to be 2.35 cm -1/kgauss and within a single mode the tuning rate is 1.80 cm -1/kgauss. Frequency jumps of ≈500 MHz between modes are inferred. Used in conjunction with the observation of known molecular absorption lines as frequency standards, the interferometer provides a calibration of the SFRL suitable for infra-red Doppler limited spectroscopy. of gases. The observed frequency asymmetry in the SFRL output power and the non-linear tuning rate (variable from ≈70-40 MHz/gauss) over a single axial mode show plane-wave cavity theory to be inadequate. These effects can be explained by considering gain controlled refraction induced by a pump beam of gaussian profile. The near resonant dispersion of the refractive index of InSb is inferred from a measurement of the spacing between adjacent peaks in the SFRL output.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call