Abstract

Luminescent metal-organic frameworks (MOFs) are emerging as one of several promising materials to study light-harvesting and energy-transfer processes. However, it is still a big challenge to tune and direct energy transfer in luminescent MOFs-based light-harvesting system. Herein, a series of new light-harvesting zinc-based luminescent MOFs with seh underlying topology were reported by successfully integrating 2,1,3-benzothiadiazole and its derivative-based carboxylic acids and pyridine-contained linkers into one structure. The strong spectra overlap between the emission and absorption spectra of carboxylic acids and pyridine-type linkers afforded an ideal platform to realize efficient energy transfer from the blue to near-infrared range. This work provides a novel approach to the rational design and synthesis of MOFs-based multicomponent light-harvesting materials with tunable energy transfer to mimic natural photosynthetic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.