Abstract

Biosynthesizing unnatural chiral amino acids is challenging due to the limited reductive amination activity of amino acid dehydrogenase (AADH). Here, for the asymmetric synthesis of l-phosphinothricin from 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), a glutamate dehydrogenase gene (named GluDH3) from Pseudomonas monteilii was selected, cloned and expressed in Escherichia coli (E. coli). To boost its activity, a “two-step”-based computational approach was developed and applied to select the potential beneficial amino acid positions on GluDH3. l-phosphinothricin was synthesized by GluDH-catalyzed asymmetric amination using the d-glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH) for NADPH regeneration. Using lyophilized E. coli cells that co-expressed GluDH3_V375S and EsGDH, up to 89.04 g L−1 PPO loading was completely converted to l-phosphinothricin within 30 min at 35 °C with a space-time yield of up to 4.752 kg·L−1·d−1. The beneficial substitution V375S with increased polar interactions between K90, T193, and substrate PPO exhibited 168.2-fold improved catalytic efficiency (kcat/KM) and 344.8-fold enhanced specific activity. After the introduction of serine residues into other GluDHs at specific positions, forty engineered GluDHs exhibited the catalytic functions of “glufosinate dehydrogenase” towards PPO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.