Abstract

Three-terminal synaptic transistor has drawn significant research interests for neuromorphic computation due to its advantage of facile device integrability. Lately, bulk-heterojunction-based synaptic transistors with bipolar modulation areproposed to exempt the use of an additional floating gate. However, the actual correlation between the channel's ambipolarity, memory characteristic, and synaptic behavior for a floating-gate free transistor has not been investigated yet. Herein, by studying five diketopyrrolopyrrole-benzotriazole dual-acceptor random conjugated polymers, a clear correlation among the hole/electron ratio, the memory retention characteristic, and the synaptic behavior for the polymer channel layer in a floating-gate free transistor is described. It reveals that the polymers with balanced ambipolarity possess better charge trapping capabilities and larger memory windows; however, the high ambipolarity results in higher volatility of the memory characteristics, namely poor memory retention capability. In contrast, the polymer with a reduced ambipolarity possesses an enhanced memory retention capability despite showing a reduced memory window. It isfurther manifested that this enhanced charge retention capability enables the device to present artificial synaptic characteristics. Theresults highlight the importance of the channel's ambipolarity of floating-gate free transistors on the resultant volatile memory characteristics and synaptic behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call