Abstract

Transition metal-nitrogen-carbon (M-N-C) catalysts (M = Fe, Co, etc.) are the most promising substituents of Pt-based catalysts for oxygen reduction reaction (ORR). However, the insufficient active species in catalysts inevitably hamper their widespread applications. Herein, we report the regulation of the active species in the catalysts of multicomponent N-doped carbon with Fe/Fe3C nanoparticles by polydopamine (PDA) coating. It is found that the PDA is conducive to increasing the pyridinic, graphitic, and total N content in the carbon matrix. Benefiting from the chelating effects, the PDA further profits the formation of Fe-Nx structures and the implantation of Fe/Fe3C nanoparticles in the matrix during the pyrolysis. As expected, the resultant catalysts exhibit over 15 times mass activity toward ORR than nitrogen-doped carbon. Moreover, our developed catalysts show long-term stability as well as high methanol tolerance, which is superior to that of the commercial Pt/C electrode. This work provides a new avenue to explore a wider range of high-performance ORR electrocatalysts by regulating the active species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call