Abstract

Nitrogen-doped, carbon-supported transition metal catalysts are excellent for several reactions. Structural engineering of M-Nx sites to boost catalytic activity is rarely studied. Here, we demonstrate that the structural flexibility of Fe-N3 site is vital for tuning the electronic structure of Fe atoms and regulating the catalytic transfer hydrogenation (CTH) activity. By introducing carbon defects, we construct Fe-N3 sites with varying Fe-N bond lengths distinguishable by X-ray absorption spectroscopy. We investigate the CTH activity by density-functional theory and microkinetic calculations and reveal that the vertical displacement of the Fe atom out of the plane of the support, induced by the Fe-N3 distortion, raises the Fe orbital and strengthens binding. We propose that the activity is controlled by the relaxation of the reconstructed site, which is further affected by Fe-N bond length, an excellent activity descriptor. We elucidate the origin of the CTH activity and principles for high-performing Fe-N-C catalysts by defect engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call