Abstract

The low chrome uptake by collagen in the conventional tanning process leads to the pollution of the wastewater. Due to environmental concerns, leather scientists are already searching for innovative ways to produce pre-tanning agents as a high exhaustion chrome tanning auxiliary. Herein, a novel kind of pre-tanning agent is engineered by converting carboxymethyl cellulose (CMC) to oxidized carboxymethyl cellulose (OCMC) via the hydrogen peroxide process. FT-IR and carboxyl content analysis demonstrated the increase in carboxyl content after oxidation. After that, the obtained OCMC was utilized as a pre-tanning agent, resulting in a high exhaustion of chrome (92.76 %) which is 27.76 % more than conventional chrome tanning (65 %), and the amount of chrome in wastewater reduced to 7.24 %. The hydrothermal stability of wet-blue increased by increasing the uptake of chrome (Ts = 118 °C). The obtained crust leather represented excellent mechanical properties (Tensile strength: 305.68 kg/cm2; tear strength: 50 kg/cm) and desirable organoleptic properties. The environmental analysis signifies a significant step towards a cleaner and sustainable tanning process (COD = 1600, BOD5 = 560 mg/L) compared to the conventional chrome tanning process. Consequently, the obtained results offer a green pre-tanning agent to meet the requirements of the sustainable development of the leather industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.