Abstract

The tunnel structure of the bronze phase vanadium dioxide (VO2(B)) can be used as the zinc ion storage active sites. However, the intense charge repulsion of divalent Zn2+ causes a sluggish reaction kinetics in the tunnel VO2(B). Here, a tungsten-oxygen bond pre-introduced (TOBI) approach is proposed to modulate the tunnel structure of VO2(B). The VO2(B) cathodes with TOBI of 0.5 at% to 3.0 at% have been controllably synthesized by a simple hydrothermal method. The results from structural analysis uncover that the pre-introduced W6+ replaces the V4+ in VO2(B) to form WO6 octahedra. Benefiting from the rapid diffusion kinetics, enhanced structural stability and improved conductivity enabled by the TOBI, the optimal VO2(B) nanoribbons with 1.5 at% shows a high reversible capacity of 265 mAh g−1, a high rate-performance of up-to 10 A g−1 and a long cycling stability of 2000 cycles. Moreover, a pseudo-capacitive dominated Zn2+ intercalation/de-intercalation behavior is solidly determined by the electrochemical kinetics testing and structural characterizations. This TOBI method is referential for developing other multivalent ion battery cathodes with outstanding performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call