Abstract
The interphase boundary formed in the process of tungsten thin-film deposition on a silicon wafer is investigated. These films are produced via (1) a CVD technique relying on hydrogen reduction of tungsten hexafluoride, (2) the same technique supplemented with plasmochemical action, and (3) magnetron deposition used for comparison purposes. It is shown that a nanometer tungsten silicide W5Si3 layer is formed at the tungsten-silicon interface only under gas-phase deposition. The effect of annealing on the specimen composition and surface resistance is investigated. It is shown that the formation and growth of a silicide WSi2 layer commences at 700°C for CVD films and at above 750°C for films obtained with plasmochemical deposition; this results in a drastic increase in their electrical resistance. Under optimal conditions, tungsten films of 8 × 10 −6 Ω cm resistivity are produced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.