Abstract

As-deposited tungsten silicide films have typically high resistivity and require annealing to lower the resistivity to practical values. Rapid thermal annealing (RTA) has emerged as the main method because impurity diffusion in silicides is extremely fast. In this study we have explored the possibility of reducing the required thermal budget for tungsten silicide annealing by sputtering multilayer W /Si films. In addition to direct technological relevance, multilayer structures offer new insights into silicide formation. We propose a hypothesis “oxygen supply to interface ratio” for explaining why multilayer W /Si structures are beneficial for silicide formation. We have prevented the possible oxygen barrier formation at the W /Si interface by diminishing the oxygen supply by several means: substrate heating during deposition, multiple thin layers, a silicon capping layer and argon purging during RTA. Tetragonal WSi 2 is formed at 700°C and no silicon-rich phases are observed. Low-resistivity WSi 2 is produced by RTA at 1000°C, 120 s. Sheet resistance values around 3 ω/□ amends the use of tungsten silicide in practical polycide structures. The ultimate resistivity of our WSi 2, 30 μω · cm, is among the lowest reported for tungsten silicide, and it is achieved in a very straightforward fashion, using typical production equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.