Abstract

Nanocrystalline tungsten oxide (WO3) thin films synthesized by thermal oxidation of tungsten substrates were exposed to low energy helium ions (energy: 80 eV; flux: 1.4–1.7 × 1020 m−2 s−1) at room temperature and at 673 K. The structure and morphology changes of the oxide were studied using Raman spectroscopy and electron microscopy. Due to the low ion energy, no erosion is observed at room temperature. In contrast, at 673 K, a color change is observed and a significant erosion is measured (∼70 nm for a fluence of ∼4 × 1021 m−2) due to a synergetic effect between ion bombardment and heating. We show that erosion processes and structural changes strongly depend on the ion fluence and in particular the higher the fluence, the lower the erosion yield, most likely due to oxygen depletion in the oxide near-surface layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.